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Abstract
This paper presents an application of the Ca~En model-based
diagnosis software to a GE Frame 6 gas turbine. The paper
focuses on the fault detection task and presents a mixed
strategy, which combines an observer strategy with a
simulation strategy, to achieve a good robustness/sensitivity
trade-off. The presented application results have been
obtained by running Ca~En in real-time on the GE Frame 6
turbine owned by National Power at Aylesford (UK).

1 Introduction
Gas turbines are one of the prime movers for industrial plants
and power generation. They are very complicate devices,
particularly the larger ones generating over 200 Mega-Watts
of electricity. Gas turbines are very critical pieces of the
plants, for that they must be carefully monitored to detect
problems at early stage, to be able to understand the state of
the turbine, to know when maintenance should be performed,
and to be able to rapidly diagnose the cause of a trip so that
power can be restored as quickly as possible.

The TIGER product which resulted from the Esprit III Project
6862, named TIGER [5] is a monitoring system for gas
turbines. It is connected directly to the gas turbine controller,
and receives data at once per second, assessing the turbine
conditions. This provides continuous condition assessment to
support condition based maintenance, and performs fast
diagnosis of abnormal situations. The Ca-En causal qualitative
model based diagnosis module, was recently included in
TIGER within the framework of the Trial Applications Esprit
project 27548, named TIGER Sheba. Ca~En expands the fault
detection mechanism with the cross relationships between
variables used in a mechanism for generating adaptive

thresholds. The fault detection strategy of Ca~En is twofold,
switching from a closed-loop mode to an open-loop mode.

During the project, Ca~En was demonstrated to work
successfully for several gas turbine subsystems. At the end of
this project, the Ca~En tool was fully integrated with the
Tiger system and performed continuous qualitative model
based prediction and fault detection on a once per second
basis. The TIGER Sheba project hence demonstrated on a real
world, commercial scale problem, that the model based
techniques represented by the Ca~En tool work for practical
user requirements.

The paper is organised along the following structure. Section
2 presents the gas turbine domain and the gas fuel system case
study. Section 3 presents de Ca~En strategy for fault detection
whereas section 4 develops the Ca~En model for the case
study. Finally, section 5 and 6 include the results and
conclusions.

2 Gas turbine fuel actuator
2.1 Simplified diagram of the gas turbine

The gas turbine simplified diagram, including the main
components and variables, is given by Figure 1 below.

Figure 1. Gas turbine components

The gas turbine control system controls the shaft speed,
modifying the gas fuel flow reference. For this reason, one of
the critical parts of the turbine is the Gas Fuel System supply
(GFS). Indeed, the performance and efficiency of the turbine



highly depends on an accurate control of the fuel input. This is
just the task of the GFS.

2.2 Gas Fuel Supply

The main components of the GFS are two actuators: the Stop
Ratio Valve (SRV) and the Gas Control Valve (GCV). These
valves are series connected and control the flow of gas fuel
that enters in the combustion chambers. The first of these
valves, the SRV, is controlled by a feedback loop that
maintains constant the gas pressure at its output (pressure
between the two valves) fpg2. This pressure being constant,
the gas fuel flow is just determined by the position of the
GCV. Hence, the GCV is a controlled valve position.

The SRV and GCV valves, and their associated feedback
loops are shown in the Figure 2.

Figure 2. Gas fuel supply schema

The GFS system is monitored by means of three sensors that
measure:

- the two valve positions fsgr and fsg;
- the pressure between the two valves fpg2.

The two valve set-points correspond to the signals fprgout and
fsrout which are provided by the controller.

2.3 GFS fault detection requirements

The turbine and its sub-systems are directly linked to a control
system, which continuously compensates for faults and
disturbances. As a result of this compensation, faults generally
manifest during transient periods and for a short amount of
time. The fault detection sensitivity is hence critical.
However, as usual, a compromise must be found in order to
be robust enough with respect to the noisy environment.

In particular, one of the main concerns of the users is the
detection of sudden changes in the fuel valve position (spikes)
which manifest during one sample only (cf. section 5), being
one second the data acquisition period. This requires
sufficiently precise detection models, which carefully track
the system behaviour and base the fault detection mechanism
on adaptive thresholds (cf. section 3).

From the discussion with the users and turbine designers, it
appeared that some abnormal situations might as well be
caused by external factors (disturbances). In this work, our
focus is not put on such faults but rather on physical
component breakdowns.

3 A semi-closed-loop strategy for fault detection
based on qualitative causal models
Ca~En [9] is a model-based supervision system devoted to
complex dynamic systems. Ca~En’s representation formalism
allows one to combine empirical causal knowledge and first
principles of the domain. Ca~En has two processing modules
(cf. [10] for more details about the algorithms):

- A fault detection module based on a causal interval
prediction mechanism;

- A fault isolation module based on an abstraction of the
models in terms of a temporal causal model.

This paper restricts its scope to the fault detection module. It
shows that the Ca~En fault detection strategy can be viewed
as a mixed strategy, combining an observer type strategy with
an open-loop simulation strategy to determine the residuals
and assess variable misbehaving. We call this strategy a semi-
closed loop strategy (SCL).

3.1 The Ca∼En diagnosis system knowledge
representation formalism

The Ca~En formalism is based on a two-level representation
scheme for the description of a physical system:

- a causal model in which the links represent the causal
influences existing among the variables, referred as the
local level;

- an analytical equation level which allows one to represent
algebra-differential equations, referred as the global level.

Both levels can manage imprecise knowledge. A Ca~En
program represents a formal model of the physical system
built from knowledge about the physics underlying the
behaviour of the system.

Causal influences allow for representing causal dependency
type knowledge. The Ca~En formalism offers four types of
influences whose internal form is presented later:

- dynamic, denoted by the symbol —D—> between the
influencing and the influenced variables;

- integral, denoted by the symbol —I—>;
- static, denoted by the symbol —S—>;
- constant, denoted by the symbol —C—>.

Causal influences are characterized by several parameters,
like a gain, a delay and a response time for dynamic
influences, the gain and response time values can be given a
real number or a real interval where known with imprecision.
They also allow for a parameter condition, which
specifies the logical conditions under which the influence is
active. This is the key for representing hybrid systems.

The global constraint level is composed of functional numeric
constraints associated with interval domains, e.g. constraints
arising from physical laws. In other words, a global constraint
is any algebraic equation, which may be non-linear, in which
each unknown is assumed to take on interval values. This



allows us to manage imprecise knowledge at this level as well.
The global constraints are expressed by means of traditional
arithmetic operators: +, -, *, / and **. These operators are
interpreted in the interval algebra.

As variables and parameters take interval values, one can
easily adapt the model’s granularity to the requirements of the
faults. Hence Ca~En has a wide coverage of faults, from those
radically changing the behaviour of the physical system to
those causing smooth deviations.

3.2. The Ca∼En prediction algorithm

The prediction algorithm performs an estimation of the
endogenous variable values across time. It can operate in an
“open-loop mode”, i.e. as a pure simulation, or in a “closed-
loop mode”, i.e. by taking into account in real time the
measured variable values and performing a reset. The
temporal unit of the prediction module is the same as the data
acquisition system. The input data are the causal model -
including initial conditions - and the evolution of the
exogenous and other measured variables over time. The
output of the system is the trajectory of each process variable
[5]. The prediction module can be used on its own or coupled
with the fault detection module, in which case it is used in a
SCL mode as explained in section 3.3.

Predicting the variable values is one of the most critical steps
in the interval model-based fault detection approach. The
predictions need to be fine enough to be sensitive to faults,
but not too fine so as to avoid generating false alarms.

In Ca~En, two steps are executed to predict the variable
values: at the local constraint level and at the global constrain
level.

(i) Local constraint level: Computation Of The Updated
Value of a Variable

From the superposition theorem that applies to the linear case,
the computation of the updated value of a variable y consists
of processing the sum of the activated influences having
exerted on the variable during the last time-interval.

Let’s first consider the case in which y is influenced by one
variable only, say x, through an influence of a given type.
Depending on its type, the Table 1 provides the internal form
(discrete) of the influence used by Ca~En as well as the
continuous counterpart.

Influence Representatio
n Formalism

Transfer Function
(Diff. or Algebraic

equation)

Discrete Transfer
Function (Ca~En

internal form)

Dynamic x—D—>y
Y (s)
Xi (s)

= Ke−sTd

1 +τs
y(t+1) = aD y(t)+

bD xi (t-d)

Integral x—I—>y
sT

K
sX
sY =

)(
)( y(t+1) = aI  y(t)+

bI  xi (t-d)

Static x—S—>y K
sX
sY

i

=
)(
)(

y(t+1)=K xi (t+1-d)

Constant x—C—>y CsY =)( y(t+1)=C

Table 1. Influences used by Ca~En.

With the following agenda and equivalencies:

- K is the gain;
- τ is the time constant of the transfer function which

corresponds with good accuracy to Tr/3, where Tr is the
response time;

- Ts is the sampling period,
- rss TTT

D eea 3−− ≈= τ

-  aI=1
-  bD=K(1-aD).  
-  bI=KTs

Let’s now generalize to a variable y influenced (actively) by a
set of variables xi, i=1,...n. The influences i=1,…,n may be of
different type. Differential influences i∈D, integral influences
i∈I, static i∈S and constant influences i∈C can combine.
Every influence is first materialised by an intermediate
variable which stands for its associated marginal influence
(this step is not necessary for static and constant influences).
The combination is then performed by adding up all the
marginal influences by means of static influences, as illustrate
in Figure 3.

Figure 3. Ca~En influence combination, X→ stands for a
set of influences of type X, X∈{D,I,S,C}

The general recurrent equations used for updating the values
of vi, i∈D, vj, j∈I, and y at each sampling instant are given by:
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where aDi, bD i, aI j and bI j are the dynamic and integral
parameters specified above, Kk are the gains of the static
influences and Cl the constants of the constant influences.
Note that the delays and response times are automatically
taken into account. The result is an interval.

(ii) Global constraint level: Refinement Of The Updated
Variables' Values

The numeric intervals obtained for the updated values
(Equation (1)) are refined with the global constraints by
performing a tolerance propagation algorithm [4] on the set of
variables. The effect of the tolerance propagation algorithm is
to filter (reduce) for consistency the values y(t) using the
global constraints.

The simulation results produced by the Ca~En prediction
module are envelopes (see Figure 4) for the variables of



interest. The envelopes provide the upper and lower bound of
the variable values at each sampled instant. As a consequence
of the interval-based reasoning used in Ca~En, the results are
complete but not correct.

Figure 4: Ca~En Causal Graph and Interval Predictions for
the Fuel System Gas turbine.

3.3 Ca~En SCL fault detection strategy

The Ca~En fault detection procedure is based on models of
normal behaviour. These are interval models, which capture
imprecise knowledge as well as noise in the interval parameter
values. The on line predictions obtained from these models is
the basis of a discrepancy detection procedure based on
adaptive thresholds, which allows us to track the physical
system [8]. This is performed by comparing the predicted and
observed values of variables across time so that static as well
as dynamic discrepancies are detected. This is essential for
controlled systems such as turbines. The controller indeed
tends to compensate for the faults in such a way that the fault
is only observable, and hence detectable, during the transient
response of the turbine. The variables then stabilise at normal
values. A classic limit checking diagnosis system is often
inefficient in this kind of situation.

The ultimate goal of Ca~En being to isolate the fault(s), a
decoupling is performed at the level of every measured
variable. This means that variable measured values are always
used to determine the prediction for their downstream
variables. For example, for a static influence, we have:

ypred(t+1) = K xmeas(t-d) (2)

At each instant t and for every measured variable y, it is
checked whether the measured value ymeas(t) (a real number)
belongs or not to the predicted value ypred(t) (an interval). If
not, variable y is said to be alarming at time t. This is
equivalent to the calculation of an interval residual:

ry(t)= ypred(t)- ymeas(t) (3)

where ry(t)⊄ 0 in the faulty case. Let’s define as  the set of
variables such that ry(t)⊄ 0. From the graphical point of view,
this is interpreted as the observed trajectory going out of the
predicted curve envelope at time t as shown in Figure 5.

In practice, it may happen that noise in the measurements is
not fully contemplated in the models or that the physical
system is disturbed by other kinds of disturbances that have

not been taken into account into the models. Consequently, a
local incompatibility between prediction and observation at
some instant t does not necessarily mean that the system is
faulty. In real applications, it is very important to have a
robust fault detection system because a system which would
untimely report faults would rapidly lose the confidence of the
operator and engineering staff. Hence, we use a more robust
indicator than just alarming variables. A fault is reported
when a variable has remained alarming during a whole
temporal interval T of length significantly greater than the
sampling period (cf. Figure 5). The variable is then said to be
misbehaving. The length of T may be regarded as a multiple
of the sampling period, i.e. T=νTs, and it should be adjusted
according to the technology of the sensors (the choice of ν is
left to the user).

Figure 5: Fault detection is based on adaptive thresholds

More formally, the set  of misbehaving variables can be
defined as follows:

y∈  at time t if y∈   since t-ν,
i.e. ∀ i = 0, ..., ν, ry(t-i) ⊄ 0

Within the above presented framework, the Ca~En fault
detection strategy is a mixed strategy which combines an
observer type strategy (closed-loop mode) with a simulation
strategy (open-loop mode) to determine the residuals and
further assess variable state. We call this strategy a semi-
closed loop strategy SCL.

The mode control (open-loop or closed-loop) depends on
whether the observed value of y is in the predicted envelope
(normal situation) or out of the predicted envelope (alarming
situation) as follows:

If y∉    then closed-loop mode, 
ypred(t+1) = a ymeas(t) + b xmeas(t-d)

If y∈    then open-loop mode,
ypred(t+1) = a ypred(t) + b xmeas(t-d)

The two mentioned modes correspond to the schemas in
Figure 6 (closed-loop mode) and Figure 7 (open-loop mode).

Figure 6. Close loop mode
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Figure 7. Open loop mode

The intuition behind this mixed strategy is related to two
issues:

- The closed-loop mode runs on one step ahead predictions
only, obtaining this way a good precision, which is
critical when using interval models [1].

- As soon as the variable becomes alarming, running on a
closed-loop mode would drive the prediction to follow
the fault, turning the fault detection procedure insensitive
to the fault.

4 Qualitative causal models

4.1 Causal structure

Given the measured exogenous variables and the intern
measured variables of the GFS as well as the physical
relations between them, a causal structure can be obtained
[11]. A partial view of the causal structure is given in Figure
8. Others causal structures had been presented in [3].

Figure 8. GFS (partial) causal structure

The isolation and detection operational model includes
operational relations as:

FSGR= (FPG2, FPRGOUT)

FSG=  (FSROUT) (4)

4.2 Operational relations identification procedure

The process of operational relation identification consists of
several consecutive steps:

(i) Model structure selection: It is based on the a priori
knowledge about the system and determines the success of
the following steps.

(i) Model estimation (or parameter estimation): once the
structure is selected, estimation algorithms process the
experimental data from non faulty scenarios to determine
the optimal interval values of the parameters.

(ii) Model validation: this step verifies whether the obtained
model is good enough for its intended use. If the obtained
model does not satisfy the modelling requirements, the
overall process is repeated in an iterative scheme. On the
other side, if the model is assessed as good enough, the
modelling process can be considered as completed.
However, one may want to repeat the process again to
obtain and compare along performance criteria different
models based on different structures or different parameter
estimation algorithms.

The interval parameters of a relation y= (x1,...,xn, P), where P
is the parameter vector of dimension m, are tuned in two
steps:

- Identification of nominal values. The least square
algorithm provides nominal values for every parameter,
and their statistical standard deviation, std(pi).

- The interval values

are obtained using an iterative algorithm as follows:

This algorithm expands the parameter interval values until the
predicted envelope includes the experimental data.

The estimated operational relations in (4) are given by:

FSGR(t)=FSGR(t-1)+K1_GFS3*(FPGOUT(t-1)-FPG2(t-1))+K2_GFS3

FSG(t)=K_GFS1*FSROUT(t) (5)

where K_GFS1, K1_GFS3 and K2_GFS3 are interval values
obtained from the above algorithm.

5. Results
The envelopes obtained for FSG and FSGR with (5) are
shown in Figure 9 and 10. The figures show the expected high
and low bounds of the envelope, as well as the actual value,
for each variable. In addition, digital indications of whether
the actual value is alarming or misbehaving according to the
SCL strategy are available and can be displayed.

Figure 9 shows a normal actuator (GCV) behaviour, where the
actual value of the valve position is always inside the
envelope. Figure 9, corresponds to a faulty scenario where
some abnormal spikes are present.

FSROUT FSG

FPRGOU
FSGR

FPG2

[ ]

end
)ˆ,,,()(             

,                 

)(ˆ),(ˆ                 
  do   ,,1              

1             
scenario        )()(y     while

)ˆ,,,()(,ˆ,0,0,0
do , allFor  

1

2
1

21
1

1

21

1
0

21

j
nj

j
i

j
i

j
i

j
i

i
j

iii
j

ii
j

i

jmeas

nii

i

Pxxfty

pstdppstdpp
mi

jj
ttyt

PxxftyPPj

Pp

=
∆+=∆+=

+−=
=∀

+=
∈∀⊄

=====
∈

−− ββββ
ββ

ββ



Figure 9. Non faulty scenario

Figure 10. Faulty scenario

The above results have been obtained with a non robust SCL
strategy (ν=1) to be able to capture the very fast abnormal
spikes.

The SCL strategy (with ν=1) has been compared to other
detection strategies [2,6,7], and has shown good performances
with respect to the false alarm/non detection compromise.

6. Conclusions
In this paper, the Ca~En fault detection methodology based on
the use of qualitative causal models with interval relationships
has been described. The results of the application of this
methodology to a real complex system, an industrial gas
turbine, are also presented. In this application example, the
estimated operational models give a fine output interval
prediction based on a complex combination of inputs, which
allows us to detect the spikes and unusual settings in a way
that was not possible before, using static limit checking only.

Based on the efficient results obtained for such a complex
system, the Ca~En tool has been integrated in TIGER, and it
is expected that this provides significant improvements in
many other industrial turbines.
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